Warning: this documentation for the development version is under construction.

Lapack Functions

Those functions are available mainly for dense matrices. When it is available for sparse matrices, it will be specified and the use detailed. In the case of dense matrices, Lapack subroutines are called and you will need to define SELDON_WITH_BLAS and SELDON_WITH_LAPACK.

GetLU performs a LU (or LDL^t) factorization
SolveLU solve linear system by using LU factorization
RefineSolutionLU improves solution computed by SolveLU
GetCholesky performs a Cholesky (A = LLT) factorization for symmetric positive definite matrices
SolveCholesky solves linear system by using Cholesky factorization
MltCholesky performs matrix vector product by using Cholesky factorization
ReciprocalConditionNumber computes the inverse of matrix condition number
GetScalingFactors computes row and column scalings to equilibrate a matrix
GetInverse computes the matrix inverse
GetQR QR factorization of matrix
GetLQ LQ factorization of matrix
GetQ_FromQR Forms explicitely Q from QR factorization
MltQ_FromQR multiplies vector by Q
SolveQR solves least-square problems by using QR factorization
SolveLQ solves least-square problems by using LQ factorization
GetEigenvalues computes eigenvalues
GetEigenvaluesEigenvectors computes eigenvalues and eigenvectors
GetSVD performs singular value decomposition (SVD)

GetLU, SolveLU

Syntax :

  void GetLU(Matrix&, Vector<int>& pivot);
  void SolveLU(const Matrix&, const Vector<int>& pivot, Vector&);
  void GetLU(Matrix&, MatrixMumps&);
  void SolveLU(MatrixMumps&, Vector&);
  void GetLU(Matrix&, MatrixPastix&);
  void SolveLU(MatrixPastix&, Vector&);
  void GetLU(Matrix&, MatrixSuperLU&);
  void SolveLU(MatrixSuperLU&, Vector&);
  void GetLU(Matrix&, MatrixUmfPack&);
  void SolveLU(MatrixUmfPack&, Vector&);

SolveLU performs a LU factorization or LDLT factorization (for symmetric matrices) of the provided matrix. This function is implemented both for dense and sparse matrices. In the case of sparse matrices, Seldon is interfaced with external librairies, i.e. MUMPS, UMFPACK, SUPERLU and Pastix. You need to define SELDON_WITH_MUMPS, SELDON_WITH_SUPERLU, SELDON_WITH_PASTIX and/or SELDON_WITH_UMFPACK if you want to factorize a sparse matrix. After a call to GetLU, you can call SolveLU to solve a linear system by using the computed factorization. A class enabling the choice between the different direct solvers has also been implemented. Its use is detailed in the section devoted to direct solvers.

Example :

  
// lapack for dense matrices
#define SELDON_WITH_LAPACK

// external libraries for sparse matrices
#define SELDON_WITH_MUMPS
#define SELDON_WITH_SUPERLU
#define SELDON_WITH_UMFPACK
#define SELDON_WITH_PASTIX

#include "Seldon.hxx"
#include "SeldonSolver.hxx"

using namespace Seldon;

int main()
{
  // dense matrices
  Matrix<double> A(3, 3);
  Vector<int> pivot;

  // factorization
  GetLU(A, pivot);

  // now you can solve the linear system A x = b
  Vector<double> X(3), B(3);
  B.Fill();
  X = B;
  SolveLU(A, pivot, X);
  
  // sparse matrices, use of Mumps for example
  MatrixMumps<double> mat_lu;
  Matrix<double, General, ArrayRowSparse> Asp(n, n);
  // you add all non-zero entries to matrix Asp
  // then you call GetLU to factorize the matrix
  GetLU(Asp, mat_lu);
  // Asp is empty after GetLU
  // you can solve Asp x = b 
  X = B;
  SolveLU(mat_lu, X);

  return 0;
}

Related topics :

Direct solvers for sparse linear systems

Location :

Lapack_LinearEquations.cxx
Mumps.cxx
SuperLU.cxx
UmfPack.cxx

GetCholesky, SolveCholesky, MltCholesky

Syntax :

  void GetCholesky(Matrix&);
  void SolveCholesky(SeldonTrans, const Matrix&, Vector&);
  void SolveCholesky(SeldonNoTrans, const Matrix&, Vector&);
  void MltCholesky(SeldonTrans, const Matrix&, Vector&);
  void MltCholesky(SeldonNoTrans, const Matrix&, Vector&);

SolveCholesky performs a Cholesky factorization (A = LLT) of the provided matrix. This function is implemented only for dense symmetric matrices (storages RowSymPacked and ColSymPacked). SolveCholesky performs a resolution by L or LT. MltCholesky performs a matrix vector product by L or LT. For sparse matrices, you can use SparseCholeskySolver, which is detailed in the section devoted to direct solvers.

Example :

  
// lapack for dense matrices
#define SELDON_WITH_LAPACK

#include "Seldon.hxx"

int main()
{
  // symmetric matrix
  int n = 3;
  Matrix<double, Symmetric, RowSymPacked> A(n, n);

  // for example, you can set A = C*C^T
  // if you don't provide a definite positive matrix, GetCholesky will fail
  Matrix<double, General, RowMajor> C(n, n), A2(n, n);
  C.FillRand(); Mlt(1e-9, C); A2.Fill(0);
  MltAdd(1.0, SeldonTrans, C, SeldonNoTrans, C, 0.0, A2);
  for (int i = 0; i < n; i++)
    for (int j = i; j < n; j++)
      A(i, j) = A2(i, j);

  // Cholesky factorization
  GetCholesky(A);

  Vector<double> X(n), B(n);
  X.Fill();

  // you can perform a matrix vector product by A : b = A*x = L L^T x
  // first step : b = L ^T x
  B = X;
  MltCholesky(SeldonTrans, A, B);
  // second step : b = L b
  MltCholesky(SeldonNoTrans, A, B);

  // now you can solve the linear system A x = b, ie L L^T x = b
  // first step x = L \ b
  X = B;
  SolveCholesky(SeldonNoTrans, A, X);
  // second step x = L^T \ x
  SolveCholesky(SeldonTrans, A, X);

  return 0;
}

Location :

Lapack_LinearEquations.cxx

ReciprocalConditionNumber

Syntax :

  T ReciprocalConditionNumber(const Matrix&, const Vector<int>&,
                              SeldonNorm1, T&);
  T ReciprocalConditionNumber(const Matrix&, const Vector<int>&,
                              SeldonNormInf, T&);

This function estimates the reciprocal of the condition number of a matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by GetLU.

Example :

  
Matrix<double> A(3, 3);
// initialization of A
A.Fill();
// computation of 1-norm and infinity-norm of matrix
double anorm_one = Norm1(A);
double anorm_inf = NormInf(A);
// factorization of A
Vector<int> pivot;
GetLU(mat_lu, pivot);

// computation of reciprocal of condition number in 1-norm
double rcond = ReciprocalConditionNumber(A, pivot, SeldonNorm1, anorm_one);
// or infinity norm
rcond = ReciprocalConditionNumber(A, pivot, SeldonNormInf, anorm_inf);

Related topics :

GetLU

Location :

Lapack_LinearEquations.cxx

RefineSolutionLU

Syntax :

  void RefineSolutionLU(const Matrix&, const Matrix&, Vector<int>&,
                        Vector&, const Vector&, T&, T&);

RefineSolutionLU improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. This function should be called after GetLU and SolveLU.

Example :

  
Matrix<double> A(3, 3);
Matrix<double> mat_lu(3, 3);
// initialization of A
A.Fill();
// factorization of A
mat_lu = A;
Vector<int> pivot;
GetLU(mat_lu, pivot);

// solution of linear system
Vector<double> X(3), B(3);
B.Fill();
X = B;
GetLU(mat_lu, pivot, X);

// now we can call RefineSolutionLU
// backward error
double berr;
// forward error
double ferr;
RefineSolutionLU(A, mat_lu, pivot, X, B, ferr, berr);

Related topics :

GetLU

Location :


Lapack_LinearEquations.cxx

GetInverse

Syntax :

  void GetInverse(Matrix&);

This function overwrites a dense matrix with its inverse.

Example :

  
Matrix<double> A(3, 3);
// initialization of A
A.Fill();

// computation of the inverse
GetInverse(A);

Related topics :

GetLU

Location :

Lapack_LinearEquations.cxx

GetScalingFactors

Syntax :

  void GetScalingFactors(const Matrix&, Vector&, Vector&, T&, T&, T&);

This function computes a row and column scaling that reduce the condition number of the matrix. This function is only defined for storages RowMajor and ColMajor (unsymmetric dense matrices).

Example :

  
Matrix<double> A(5, 3);
// initialization of A
A.Fill();

// computation of scaling
int m = A.GetM(), n = A.GetN();
Vector<double> row_scale(m), col_scale(n);
double row_condition_number, col_condition_number;

GetScalingFactors(A, row_scale, col_scale, row_condition_number, col_condition_number, amax);

Location :

Lapack_LinearEquations.cxx

GetQR

Syntax :

  void GetQR(Matrix&, Vector&);
  void SolveQR(Matrix&, Vector&, Vector&);

GetQR computes the QR factorization of a rectangular matrix, while SolveQR exploits this factorization to solve a least-squares problem. This is only defined for storages RowMajor and ColMajor (unsymmetric dense matrices).

Example :

  
Matrix<double> A(5, 3);
// initialization of A
A.Fill();

// QR Factorization
int m = A.GetM(), n = A.GetN();
Vector<double> tau;
GetQR(A, tau);

// Solving Least squares problem QR X = B  (m >= n)
Vector<double> X, B(m);
B.Fill();
SolveQR(A, tau, X);

Location :

Lapack_LeastSquares.cxx

GetLQ

Syntax :

  void GetLQ(Matrix<T>&, Vector<T>&);
  void SolveLQ(Matrix<T>&, Vector<T>&, Vector<T>&);

GetLQ computes the LQ factorization of a rectangular matrix, while SolveLQ exploits this factorization to solve a least-squares problem. This is only defined for storages RowMajor and ColMajor (unsymmetric dense matrices).

Example :

  
Matrix<double> A(3, 5);
// initialization of A
A.Fill();

// LQ Factorization
int m = A.GetM(), n = A.GetN();
Vector<double> tau;
GetLQ(A, tau);

// Solving Least squares problem LQ X = B  (m <= n)
Vector<double> X, B(m);
B.Fill();
SolveLQ(A, tau, X);

Location :

Lapack_LeastSquares.cxx

MltQ_FromQR

Syntax :

  void MltQ_FromQR(const Side&, const Trans&, const Matrix&,
                   const Vector&, Matrix&);

This function multiplies a matrix by Q, where Q is the orthogonal matrix computed during QR factorization. This is only defined for storages RowMajor and ColMajor (unsymmetric dense matrices).

Example :

  
Matrix<double> A(5, 3);
// initialization of A
A.Fill();

// QR Factorization
int m = A.GetM(), n = A.GetN();
Vector<double> tau;
GetQR(A, tau);

// computation of Q*C
Matrix<double> C(m, m);
MltQ_FromQR(SeldonLeft, SeldonNoTrans, A, tau, C);

// you can compute C*transpose(Q)
MltQ_FromQR(SeldonRight, SeldonTrans, A, tau, C);

// for complex numbers, you have SeldonConjTrans

Location :

Lapack_LeastSquares.cxx

GetQ_FromQR

Syntax :

  void GetQ_FromQR(Matrix&, Vector&);

This functions overwrites the QR factorization by matrix Q. This is only defined for storages RowMajor and ColMajor (unsymmetric dense matrices).

Example :

  
Matrix<double> A(5, 3);
// initialization of A
A.Fill();

// QR Factorization
int m = A.GetM(), n = A.GetN();
Vector<double> tau;
GetQR(A, tau);

Matrix<double> Q = A;
GetQ_FromQR(Q, tau);

Location :

Lapack_LeastSquares.cxx

GetEigenvalues

Syntax :

  void GetEigenvalues(Matrix&, Vector&);
  void GetEigenvalues(Matrix&, Vector&, Vector&);
  void GetEigenvalues(Matrix&, Matrix&, Vector&);
  void GetEigenvalues(Matrix&, Matrix&, Vector&, Vector&);
  void GetEigenvalues(Matrix&, Matrix&, Vector&, Vector&, Vector&);

This function computes the eigenvalues of a matrix. The matrix is modified after the call to this function.

Example :

  
Matrix<double> A(5, 5);
Vector<double> lambda_real, lambda_imag;
// initialization of A
A.Fill();

// computing eigenvalues (real part and imaginary part)
GetEigenvalues(A, lambda_real, lambda_imag);

// for symmetric matrices, eigenvalues are real
Matrix<double, Symmetric, RowSymPacked> B(5, 5);
Vector<double> lambda;
// initialization of B
B.Fill();
GetEigenvalues(B, lambda);

// for hermitian matrices too
Matrix<complex<double>, General, RowHermPacked> C(5, 5);
// initialization of C
C.Fill();
GetEigenvalues(C, lambda);

// other complex matrices -> complex eigenvalues
Matrix<complex<double>, Symmetric, RowSymPacked> D(5, 5);
Vector<complex<double> > lambda_cpx;
// initialization of D
D.Fill();
GetEigenvalues(D, lambda_cpx);

The function can also solve a generalized eigenvalue problem, as detailed in the following example.

Example :

  
// symmetric matrices A, B
Matrix<double, Symmetric, RowSymPacked> A(5, 5), B(5, 5);
Vector<double> lambda;
// initialization of A and B as you want
// B has to be positive definite
A.FillRand(); B.SetIdentity();

// we solve generalized eigenvalue problem
// i.e. seeking lambda so that A x = lambda B x
// the function assumes that B is POSITIVE DEFINITE
GetEigenvalues(A, B, lambda);

// same use for hermitian matrices
Matrix<complex<double>, General, RowHermPacked> Ah(5, 5), Bh(5,5);
// initialize Ah and Bh as you want
// Bh has to be positive definite
// as a result, eigenvalues are real and you compute them 
GetEigenvalues(Ah, Bh, lambda);

// other complex matrices
// provide complex eigenvalues, potentially infinite if B is indefinite
Matrix<complex<double> > C(5, 5), D(5, 5);
Vector<complex<double> > alphac, betac;

// eigenvalues are written in the form lambda = alphac/betac
GetEigenvalues(C, D, alphac, betac);

// for unsymmetric real matrices, real part and imaginary are stored
// in different vectors
Matrix<double> Ar(5, 5), Br(5, 5);
Vector<double> alpha_real, alpha_imag, beta;

// lambda are written in the form lambda = (alpha_real,alpha_imag)/beta
GetEigenvalues(Ar, Br, alpha_real, alpha_imag, beta);

Location :

Lapack_Eigenvalues.cxx

GetEigenvaluesEigenvectors

Syntax :

  void GetEigenvaluesEigenvectors(Matrix&, Vector&, Matrix&);
  void GetEigenvaluesEigenvectors(Matrix&, Vector&, Vector&, Matrix&);
  void GetEigenvaluesEigenvectors(Matrix&, Matrix&, Vector&, Matrix&);
  void GetEigenvaluesEigenvectors(Matrix&, Matrix&, Vector&, Vector&,
                                  Matrix&);

This function computes the eigenvalues and eigenvectors of a matrix. The matrix is modified after the call to this function. Each eigenvector is stored in a column. When real unsymmetric matrices are selected, you need to compute real and imaginary part of eigenvalues, then if the j-th eigenvalue is real, the j-th column is the eigenvector associated. If j-th and j+1-th are complex conjugate eigenvalues, the j-th and j+1-the associated columns are vectors A et B such that A+iB and A-iB are the complex conjugate eigenvectors of the initial matrix. This function has also been overloaded for sparse eigenvalue problems, by calling an external eigenvalue solver (as Arpack or Anasazi).

Example :

  
Matrix<double> A(5, 5);
Vector<double> lambda_real, lambda_imag;
Matrix<double> eigen_vectors;
// initialization of A
A.Fill();

// computing eigenvalues and eigenvectors
GetEigenvalues(A, lambda_real, lambda_imag, eigen_vectors);

// for symmetric matrices, eigenvalues are real
Matrix<double, Symmetric, RowSymPacked> B(5, 5);
Vector<double> lambda;
// initialization of B
B.Fill();
GetEigenvalues(B, lambda);

// for hermitian matrices too
Matrix<complex<double>, General, RowHermPacked> C(5, 5);
// initialization of C
C.Fill();
GetEigenvalues(C, lambda);

// other complex matrices -> complex eigenvalues
Matrix<complex<double>, Symmetric, RowSymPacked> D(5, 5);
Vector<complex<double> > lambda_cpx;
// initialization of D
D.Fill();
GetEigenvalues(D, lambda_cpx);


As for GetEigenvalues, this function can be used to solve generalized eigenvalues problems as detailed in the following example.

Example :

  
// symmetric matrices A, B
Matrix<double, Symmetric, RowSymPacked> A(5, 5), B(5, 5);
Vector<double> lambda;
Matrix<double> eigen_vectors;
// initialization of A and B as you want
// B has to be positive definite
A.FillRand(); B.SetIdentity();

// we solve generalized eigenvalue problem
// i.e. seeking lambda so that A x = lambda B x
// the function assumes that B is POSITIVE DEFINITE
GetEigenvalues(A, B, lambda, eigen_vectors);

// same use for hermitian matrices
Matrix<complex<double>, General, RowHermPacked> Ah(5, 5), Bh(5,5);
// initialize Ah and Bh as you want
// Bh has to be positive definite
// as a result, eigenvalues are real and you compute them 
Matrix<complex<double> > eigen_vec_cpx;
GetEigenvalues(Ah, Bh, lambda, eigen_vec_cpx);

// other complex matrices
// provide complex eigenvalues, potentially infinite if B is indefinite
Matrix<complex<double> > C(5, 5), D(5, 5);
Vector<complex<double> > alphac, betac;

// eigenvalues are written in the form lambda = alphac/betac
GetEigenvalues(C, D, alphac, betac, eigen_vec_cpx);

// for unsymmetric real matrices, real part and imaginary are stored
// in different vectors
Matrix<double> Ar(5, 5), Br(5, 5);
Vector<double> alpha_real, alpha_imag, beta;

// lambda are written in the form lambda = (alpha_real,alpha_imag)/beta
GetEigenvalues(Ar, Br, alpha_real, alpha_imag, beta, eigen_vector);

Location :

Lapack_Eigenvalues.cxx

GetSVD

Syntax :

  void GetSVD(Matrix&, Vector&, Matrix&, Matrix&);

This function computes the singular value decomposition of a rectangular matrix. As a result, this function is defined only for storages RowMajor and ColMajor.

Example :

  
Matrix<double> A(10, 5);
Vector<double> lambda;
Matrix<double> U, V;
// initialization of A
A.Fill();

// computing singular value decomposition
// A = U diag(lambda) V
GetSVD(A, lambda, U, V);

Location :

Lapack_Eigenvalues.cxx