// Copyright (C) 2003-2009 Marc Duruflé
// Copyright (C) 2001-2009 Vivien Mallet
//
// This file is part of the linear-algebra library Seldon,
// http://seldon.sourceforge.net/.
//
// Seldon is free software; you can redistribute it and/or modify it under the
// terms of the GNU Lesser General Public License as published by the Free
// Software Foundation; either version 2.1 of the License, or (at your option)
// any later version.
//
// Seldon is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
// more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with Seldon. If not, see http://www.gnu.org/licenses/.


#ifndef SELDON_FILE_ITERATIVE_CGS_CXX

namespace Seldon
{
 
 
//! Solves linear system using Conjugate Gradient Squared (CGS)
 
/*!
    Solves the unsymmetric linear system Ax = b
    using the Conjugate Gradient Squared method.
   
    return value of 0 indicates convergence within the
    maximum number of iterations (determined by the iter object).
    return value of 1 indicates a failure to converge.
       
    See: P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear
    systems, SIAM, J.Sci. Statist. Comput., 10(1989), pp. 36-52
   
    \param[in] A Complex General Matrix
    \param[in,out] x Vector on input it is the initial guess
    on output it is the solution
    \param[in] b  Vector right hand side of the linear system
    \param[in] M Right preconditioner
    \param[in] iter Iteration parameters
  */

 
template <class Titer, class Matrix1, class Vector1, class Preconditioner>
 
int Cgs(Matrix1& A, Vector1& x, const Vector1& b,
         
Preconditioner& M, Iteration<Titer> & iter)
 
{
   
const int N = A.GetM();
   
if (N <= 0)
     
return 0;
   
   
typedef typename Vector1::value_type Complexe;
   
Complexe rho_1, rho_2(0), alpha, beta, delta;
   
Vector1 p(b), phat(b), q(b), qhat(b), vhat(b), u(b), uhat(b),
      r
(b), rtilde(b);
   
   
// we initialize iter
   
int success_init = iter.Init(b);
   
if (success_init != 0)
     
return iter.ErrorCode();
   
   
// we compute the initial residual r = b - Ax
   
Copy(b,r);
   
if (!iter.IsInitGuess_Null())
     
MltAdd(Complexe(-1), A, x, Complexe(1), r);
   
else
      x
.Zero();
   
   
Copy(r, rtilde);
   
    iter
.SetNumberIteration(0);
   
// Loop until the stopping criteria are reached
   
while (! iter.Finished(r))
     
{
        rho_1
= DotProd(rtilde, r);
       
       
if (rho_1 == Complexe(0))
         
{
            iter
.Fail(1, "Cgs breakdown #1");
           
break;
         
}
         
       
if (iter.First())
         
{
           
Copy(r, u);
           
Copy(u, p);
         
}
       
else
         
{
           
// u = r + beta*q
           
// p = beta*(beta*p +q) + u  where beta = rho_i/rho_{i-1}
            beta
= rho_1 / rho_2;
           
Copy(r, u);
           
Add(beta, q, u);
           
Mlt(beta, p);
           
Add(Complexe(1), q, p);
           
Mlt(beta, p);
           
Add(Complexe(1), u, p);
         
}
       
       
// preconditioning phat = M^{-1} p
        M
.Solve(A, p, phat);
       
       
// matrix vector product vhat = A*phat
       
Mlt(A, phat, vhat); ++iter;
        delta
= DotProd(rtilde, vhat);
       
if (delta == Complexe(0))
         
{
            iter
.Fail(2, "Cgs breakdown #2");
           
break;
         
}
       
// q = u-alpha*vhat  where alpha = rho_i/(rtilde,vhat)
        alpha
= rho_1 /delta;
       
Copy(u,q);
       
Add(-alpha, vhat, q);
       
       
//  u =u+q
       
Add(Complexe(1), q, u);
        M
.Solve(A, u, uhat);
       
       
Add(alpha, uhat, x);
       
Mlt(A, uhat, qhat);
       
Add(-alpha, qhat, r);
       
        rho_2
= rho_1;
       
       
++iter;
     
}
   
   
return iter.ErrorCode();
 
}
 
} // end namespace

#define SELDON_FILE_ITERATIVE_CGS_CXX
#endif