// Copyright (C) 2003-2009 Marc Duruflé
// Copyright (C) 2001-2009 Vivien Mallet
//
// This file is part of the linear-algebra library Seldon,
// http://seldon.sourceforge.net/.
//
// Seldon is free software; you can redistribute it and/or modify it under the
// terms of the GNU Lesser General Public License as published by the Free
// Software Foundation; either version 2.1 of the License, or (at your option)
// any later version.
//
// Seldon is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
// more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with Seldon. If not, see http://www.gnu.org/licenses/.


#ifndef SELDON_FILE_ITERATIVE_BICGSTAB_CXX

namespace Seldon
{

 
//! Implements  BiConjugate Gradient Stabilized (BICG-STAB)
 
/*!
    return value of 0 indicates convergence within the
    maximum number of iterations (determined by the iter object).
    return value of 1 indicates a failure to converge.
   
    See: H. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant
    of BiCG for the solution of nonsysmmetric linear systems, SIAM J. Sci.
    Statist. Comput. 13(1992), pp. 631-644
   
    \param[in] A  Complex General Matrix
    \param[in,out] x  Vector on input it is the initial guess
    on output it is the solution
    \param[in] b  Vector right hand side of the linear system
    \param[in] M Right preconditioner
    \param[in] iter Iteration parameters
  */

 
template <class Titer, class Matrix1, class Vector1, class Preconditioner>
 
int BiCgStab(Matrix1& A, Vector1& x, const Vector1& b,
               
Preconditioner& M, Iteration<Titer> & iter)
 
{
   
const int N = A.GetM();
   
if (N <= 0)
     
return 0;
   
   
typedef typename Vector1::value_type Complexe;
   
Complexe rho_1, rho_2(0), alpha(0), beta, omega(0), sigma;
   
Vector1 p(b), phat(b), s(b), shat(b), t(b), v(b), r(b), rtilde(b);
   
   
// we initialize iter
   
int success_init = iter.Init(b);
   
if (success_init != 0)
     
return iter.ErrorCode();
   
   
// we compute the residual r = b - Ax
   
Copy(b, r);
   
if (!iter.IsInitGuess_Null())
     
MltAdd(Complexe(-1), A, x, Complexe(1), r);
   
else
      x
.Zero();
   
   
Copy(r, rtilde);
   
    iter
.SetNumberIteration(0);
   
// Loop until the stopping criteria are satisfied
   
while (! iter.Finished(r))
     
{
       
        rho_1
= DotProdConj(rtilde, r);
       
if (rho_1 == Complexe(0))
         
{
            iter
.Fail(1, "Bicgstab breakdown #1");
           
break;
         
}
       
       
if (iter.First())
         
Copy(r, p);
       
else
         
{
           
if (omega == Complexe(0))
             
{
                iter
.Fail(2, "Bicgstab breakdown #2");
               
break;
             
}
           
// p= r + beta*(p-omega*v)
           
// beta = rho_i/rho_{i-1} * alpha/omega
            beta
= (rho_1 / rho_2) * (alpha / omega);
           
Add(-omega, v, p);
           
Mlt(beta, p);
           
Add(Complexe(1), r, p);
         
}
       
// preconditioning phat = M^{-1} p
        M
.Solve(A, p, phat);
       
       
// product matrix vector  v = A*phat
       
Mlt(A, phat, v);
       
       
// s=r-alpha*v  where alpha = rho_i / (v,rtilde)
        sigma
= DotProdConj(rtilde, v);
       
if (sigma == Complexe(0))
         
{
            iter
.Fail(3, "Bicgstab breakdown #3");
           
break;
         
}
        alpha
= rho_1 / sigma;
       
Copy(r, s);
       
Add(-alpha, v, s);
       
       
// we increment iter, bicgstab has two products matrix vector
       
++iter;
       
if (iter.Finished(s))
         
{
           
// x=x+alpha*phat
           
Add(alpha, phat, x);
           
break;
         
}
       
       
// preconditioning shat = M^{-1} s
        M
.Solve(A, s, shat);
       
       
// product matrix vector t = A*shat
       
Mlt(A, shat, t);
       
        omega
= DotProdConj(t, s) / DotProdConj(t, t);
       
       
// new iterate x=x+alpha*phat+omega*shat
       
Add(alpha, phat, x);
       
Add(omega, shat, x);
       
       
// new residual r=s-omega*t
       
Copy(s, r);
       
Add(-omega, t, r);
       
        rho_2
= rho_1;
       
       
++iter;
     
}
   
   
return iter.ErrorCode();
 
}
 
} // end namespace

#define SELDON_FILE_ITERATIVE_BICGSTAB_CXX
#endif